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ABSTRACT

A new shape normalization for non-uniformly active isothermal catalyst

pellets is developed. It is based on the volume average of catalyst activity

in a thin reaction zone near the external surface of the active catalyst

reqion, wherein the reaction occurs in the diffusion-controlled reqime. This

normalization permits inclusion of those catalyst activity profiles that

become zero at the external surface of the catalytically active reqion, which

were excluded from previous normalizations. When the surface activity is

nonzero, results reduce to those obtained earlier* Ltt. e normalization

provides exactly the slope of the effectiveness factor - Thiele modulus

curves, for all pellet shapes and activity profiles, in the limit of

diffusion-control. The development is initially made for first-order

reactions, and then qeneralized to include arbitrary reaction rate

expressions. Effects of finite external mass transfer resistances are also

discussed. - .... ....
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SIGNIFICANCE AND EXPLANATION

The effect of diffusion on the rate of chemical reaction in a catalyst

pellet is evaluated by the so-called "effectiveness factor," which is the

ratio of the actual rate of reaction and that in the absence of transport

limitations. For an isothermal first-order reaction, the effectiveness factor

is a function of the pellet geometry, the Thiele modulus (which represents how

fast the reaction is, relative to diffusion), and the Biot number (which

represents the facility of external mass transfer to the pellet, relative to

diffusion). If the pellet is uniformly active catalytically, then Aris shoved

in a classic work [Chem. Eng. Sci., 6, 262 (1957)] that the len.ith dimension

used in defining the Thiele modulus and the Biot number could be so redefined,

in a physical manner, that the asymptotic behavior of the effectiveness factor

for large values of the Thiele modulus (i.e., the diffusion-controlled regime)

was identical for various pellet shapes. Fortunately with such a redefini-

tion, the effectiveness factor versus Thiele modulus curves, for the entire

ranqe of Thiele modulus values, also virtually coincide for all pellet shapes.

Thus, essentially, if one performs computation for one pellet shape, one has

simultaneously obtained the effectiveness factor for all pellet shapes.

Now, either as a result of preparation technique, which may well be

deliberate, or as a result of use, catalyst pellets develop non-uniforr

activity profiles. We have recently been attemptinq (1,21 to provide shape-

normalizations in the above sense, when the catalyst activity profile is non-

uniform. Various types of activity profiles were previously (1,21 shown

amenable to such normalization. The present work hrinqs us one step closer to

the eventual qoal of includinq all possible types of activity profiles.

The responsibility for the wording and views expressed in this descriptive
summary lies with N4RC, and not with the authors of this report.



ON SHAPE NORMALIZATION FOR NON-UNIFORMLY ACTIVE CATALYST PELLETS - III

M. Morbidelli and A. Varma

1, INTRODUCTION

The shape normalization for non-uniformly active catalyst pellets, in

which an isothermal first-order reaction occurs, was examined extensively in

two previous papers [1,21. Both the cases of negligible and finite external

mass transfer resistance were considered. The particular case of catalyst

activity profiles which become zero in a continuous manner somewhere within

the pellet or at the pellet external surface, specifically also with

neqligible external mass transfer resistances, was however previously

excluded.

The pu..pose of the present communication is to develop a physically based

shape normalization which also includes this particular situation. In fact,

only the asymptotic slope of the effectiveness factor-Thiele modulus curves,

for lare values of the Thiele modulus (i.e., diffusion-controlled reqime), is

found amenable to a perfect normalization. The absolute magnitude of the

effectiveness factor, even for large values of the Thiele modulus, is found to

depend still on parameters that characterize the specific activity profile

under consideration. For catalyst activity profiles which do not fit in the

category described above, the normalization developed here becomes identical

with that given by us earlier [21.

0
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2. ASYMPTOTIC BEHAVIOR AND SHAPE NORMALIZATION

Consider a catalyst pellet with an arbitrary given catalyst activity

distribution a(x), in which an isothermal first-order reaction occurs with

negligible mass transfer resistance external to the active catalyst zone. Let

us now examine the behavior of the effectiveness factor for large values of

the Thiele modulus.

It is well-known that in the diffusion-controlled regime, the reaction

occurs near the surface of the active catalyst zone, within a narrow reqion

whose width is proportional to the reciprocal of the Thiele modulus [3]. This

may also be illustrated qualitatively by the following arquments.

The distance, 6 covered by a diffusing reactant molecule within the

pellet can be evaluated from the relationship

6 - (D.,)1/2 (1)

where De  is the effective diffusion coefficient, and T is the

characteristic time available to the reactant molecule for diffusing, before

it reacts. A reasonable estimate of T can be obtained by considering a batch

system, described by the material balance
dC =-- (2)
dt

with the initial condition: C - CO at t = 0. In this equation, the

catalyst activity a is assumed constant during time. From the solution of

eqn (2):

C - C~exp(-kat), (3)

the time-constant for the reaction is

T- 1/(a), (4)

-2-
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For the diffusion-reaction problem, a would he replaced by a the

volume average of a(x) in the active catalyst reqion where the reaction

occurs; substitutinq this in eqn (1) qives

(Da/ka.) (5)

Now, introducinq the dimensionless width of the reaction zone r. = 6/R,

the expected relationship with the Thiele modulus is obtained:

r I 1 /2. (6)
kaa

Note that a, is the volume averaqe value of the catalyst activity in the

reaction zone, (R-4) ( x C R; i.e.,

jR a(x)dV

R-6 (
8 R dV

R-6 p

The definition of the Thiele modulus, eqn (6), thus obtained is consistent

with that used previously [11 for non-uniformly active catalyst pellets; the

average value, a, here replaces the surface value, a(R) employed before.

Introducinq the dimensionless space coordinate r - x/R, and notinq from

eqn (6) that r, + 0 as + + -, and therefore dV = Sxdx for all pellet

shapes, eqn (7) reduces to

a5 
= 1 ]J1  a(r)dr. (8)

r

The effectiveness factor can be calculated, by definition, as the ratio

between the rate of reactant consumption in the actual reaction zone

(1-r, C r C 1), and the same quantity in the case of fast diffusion--in

which case the reaction occurs within the whole catalytically active reqion:

(S x )(9)

V (ka )Ca

-3-v- ff 1 )c



where the subscript a denotes the asymptotic value of the effectiveness

factor in the diffusion-controlled reqime. is, similar to the

volume averaqe catalyst activity in the entire catalytically active reqion

(which becomes the reaction zone in the case of fast diffusion; i.e., the

kinetic-controlled regime), a1 is therefore given by eqn (7), by replacing

by R, and this in dimensionless form reduces to

aI J'a(r)rndr. (10)
0

Note that if the catalyst activity profile a(x) is defined, as done before

11,21, by the ratio between the local rate constant k(x) and its volume

averaged value k, then by definition, a 1 M I for all pellet shapes and

activity profiles. With such activity profiles, the volume average reaction

rate constant, in pellets of different shapes and different activity profiles,

in the same. Catalyst activity profiles of this type are hereafter called

conservative, since they are defined so as to meet the condition of active

catalyst conservation.

In eqn (9), the reactant concentration C in the reaction zone can be

estimated as

C M CS, (11)

since r, + 0 as *+ -, and the reaction zone in the limit shrinks to the

active catalyst zone surface. With this, eqn (9) gives

S a
a V -(12

p a1

Also, Sx/V p  (n+1)/R, and r6 = 6/R; and so

a = (n+l)ra,/a1,. (13)

-4-
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If we now introduce a normalized Thiele modulus 0, defined as

Vpal ka , a.
F.!) - -/2 _ 0 -1(14)- Dn+1 -

Sxa6  e a6

and substitute eqns (6) and (14) in eqn (13), then

n- 14. (15)

Thus for different pellet shapes (i.e., n) and for different catalyst

activity profiles a(x), the asymptotic behavior of n for the diffusion-

controlled regime is brought together. Note that for a conservative activity

profile (i.e., a1 = 1), the expression of the normalized Thiele modulus

given by eqn (14) differs from that used before [1,21 only in that a6, the

volume average catalyst activity in the reaction zone, is used in place of the

catalyst activity at the outer surface of the catalytically active zone,

i(R).

From eqn (8), it is evident that a6is a function of the reaction zone

width, r, and of the activity profile, a(r). Depending on the specific

characteristics of the latter, two different possibilities can arise, and

these are now identified.

Since we are considering the case of + Go, and therefore r6 + 0, the

activity profile a(r) may be approximated by its Taylor series around

r= 0 (i.e., r = 1) truncated after the first-order term:

a(r) = a(1) + a'(1)r6 + 0(r6) (16)

where a(1) and al(1) are the values of catalyst activity and its first

derivative, respectively, evaluated at the outer surface of the active

catalyst zone (i.e., r - 1). Substituting eqn (16) in eqn (8), and

performinq the indicated integration gives

- 2
a6 - a(1) + a'(1)r 6 /2 + O(r6). (17)

-5-
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If a(1) 0 0, then for r, + 0 (i.e., + )

a, " a(1). (18)

If, however, a(l) 0 0, the limitinq value of a8, for r, + 0, becomes a

function of ra and of the derivative of the activity profile, a'(1). If

the latter quantity is also null, then a depends on the first nonzero

derivative of a(r) at r - 1.

The result that we wish to stress here is the following:

i) if a(1) * 0, then a8 is a function only of the activity profile

itself;

ii) if a(1) = 0, then a depends also on r,, and therefore through

eqn (6) on the Thiele modulus, * . For this reason, in the relationship

between q a and # qiven by eqns (14) and (15), the value of a8  also

affects the asymptotic exponent of the Thiele modulus, and not only the

multiplier as in the previous case.

2.1. Case of a(1) * 0.

Substituting eqn (18) in (14) gives

vap- I - 1/2 (19)
S a(l) D"))
x e

which is the same as that obtained before (1,21. From eqn (15), a =I/0.

We do not pursue this case further, since it has been examined extensively

earlier (1,2].

-6-

S . ....'. '



2.2. Case of a(1) - 0.

In this case, a, is a function of r 8 , which depends on the specific

type of activity profile under consideration. We shall therefore focus on

a(r) w m(l-r)8  (20)

which was examined before 11,21. Note that for suitable values of m and

0, eqn (20) may be used to approximate many activity profiles which are

characterized by a(1) = 0.

Substituting ean (20) in eqn (8) gives

0
a, - mr6 /(O+1) (21)

which usinq eqn (6) leads to an expression of the reaction zone width:

(0+1 
D

r= (,0l)1/(0+2)( e )1/(0+2) (22)

These two equations, together with eqns (14) and (15) qive

1+m 1/(B+2)0kR2)-(8+I)/(8+2) (23)

a1  e

a may be evaluated from eqn (10) for the specific a(r) qiven by eqn (20):

(n+l) !
a, W " n (24)

(+i

Finally, introducinq R(i/D) 02, a Thiele modulus based on the averaqe

rate constant and the characteristic pellet length, eqn (23) may he rewritten

in the form

n+1

11 (0 4)-2g (0+1)-C iI2TI a 0 n! (25)

-7-
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where c 1 I/(0+2), q = (0+1)/(0+2), and n = 0,2 indicate the slab and

sphere geometries, respectively. Note that 1/2( g 4 1, and so the asymptotic

behavior of the effectiveness factor as a function of the Thiele modulus is

with an exponent that lies between -1 and -2.

The exact asymptotic expression, qe obtained from the exact analytic

solution (reported in Table 5 of (21) as #0 + 1 is:

n+1

(0+2) () i=1 (26)
ne = 0 2  mg F- nl "*

A comparison of the two asymptotic expressions, given by eqns (25) and (26),

shows that the exponents of the Thiele modulus are identical, but the

multipliers are somewhat different. This difference is examined next, but it

is first worth noting that eqns (25) and (26) are both valid for arbitrary

m and 8, whether they satisfy the conservation condition or not.
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3. NUMERICAL COMPARISONS

In order to determine the difference between the two asymptotic

expressions for n, let us define their ratio

= n e/ a  (27)

which, using eqns (25) and (26) is given as

(8+1)0(0+2) 8 c r(g) (28)

a quantity that is a function only of 8, and not of pellet shape.

It may now be seen that 9 + 1 as either 8 + 0 or + * , and so the

two asymptotic expressions match in both limits. The value of as a

function of the activity profile parameter 8 is shown in Fiq. 1. It may be

observed that the maximum deviation of ia from ne occurs at 8 2 4.5,a e

where the relative percentage error is 14.2%. Moreover, 1 4 1 for all

positive 8, which indicates that na is an upper bound of the exact

asymptote e

A calculation of the effectiveness factor n, in the entire range of the

normalized Thiele modulus 0, evaluated by usinq the exact solution (see

Table 5 of (21), is shown in Fiq. 2 for the slab (n=0) and sphere (n=2)

qeometries, for 0=0 and 3. As noted above, it may be seen that the

asymptotic slopes of the various n-4 curves for larqe 0 are identical, and

equal to -1. The absolute maqnitudes of the asymptotes, however, depend on

the activity profile parameter 8, but not on pellet shape. It may also be

observed that the spherical pellet reaches the asymptotic value at relatively

larcer values of It. This is due to the presence, in the exact asymptotic

expression of the effectivenpss factor for the sphere (see Table 5 of [21), of

a term proportional to 0 2, in addition to the leadinq term proportional to
0

-9-
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-2 -29 -2

Since -2 < -2q< -1, the term with eventually dominates

this feature, however, delays achievement of the asymptotic slope -1. Note

also that this effect becomes more siqnificant at larger vlaues of 8.

It is worth reiterating that when a(I) - 0, the physically based shape

normalization developed here, brings only the asymptotic slopes of the

effectiveness factor - Thiele modulus curves toqether for various pellet

shapes and activity profiles; the absolute magnitude is not normalized

perfectly. A more accurate evaluation of the magnitude of the effectiveness

factor would require a more detailed description of the reactant concentration

profile close to the outer surface of the active catalyst zone. This means

that the reaction time, T would be evaluated through a relationship more

accurate than that given by eqn (2), which takes into account both the

catalyst activity and the reactant concentration profile in the reaction

zone. Such a relationship, however, becomes the same as the starting point of

the present diffusion-reaction problem, and so the purpose of an a priori

shape normalization is defeated.

-12-



4. EFFECT OF EXTERNAL MASS TRANSFER RESISTANCE

Let us now consider a pellet in which the active catalyst is located in

an inner core 0 x < x2, while the balance x2 < x < R is an inert

support. The activity profile thus has the form

a(x) for 0 4 x < x2
(29)

0 for x2 < x C R

where a(x) is an arbitrary qiven distribution. If external mass transfer

resistance in the bulk phase is also taken into account, the problem reduces

to the one considered earlier in (21.

It was shown before (21 that the effectiveness factor can be expressed as

1 S2 02 *2 11
_ - + I (30)

D x 51i fiit

where n D  is the effectiveness factor in the case of neqliqible external mass

transfer resistance (i.e., both Bi = and = OS), and whose

asymptotic form for large * is given by eqn (15) with x2 replacing R.

All the other quantities are defined as in [21, simply replacing catalyst

activity at the active catalyst zone surface, a(1) by the average value in

the reaction zone, a,. As a consequence, besides the normalized Thiele

modulus defined by eqn (14), the normalized pellet characteristic length is

also modified, as

RVPS a) (31)

The variable a, also enters, through eqn (31), definitions of the Biot

numbers Bi and 8iin t . Note that if a(1) * 0, then due to eqn (18), all

these quantities become identical to the correspondinq ones in (21.

-13-



The effectiveness factor n, can now be represented as a function of its

normalized asymptotic value w, derived from eqns.(15) and (30) as

-, S 2 02 + 2 (32)

S txBi Biin

for all pellet shapes, activity profiles, and external mass transfer

resistances, Si and Biin t* All the n-W curves reported in Fig. 2 of 12]

are shown in Fig. 3, including also the curves obtained for the activity

profile (20) with B - 0, 0.5,1,2 and 3, for both the slab (n-0) and sphere

(n-2) qeometries, and the following set of values for Bi and Bi
int'

5,"; 4,10; 5,10. The consequent enlarqement of the hatched zone is by the

lower region in Fig. 3. It may be observed that although the asmptotic

behavior, both for small and large *, is identical for all situations,

inclusion of activity profile (20) for which a(1) - 0 causes a significant

increase in the differences between the various n-w curves for intermediate

values of w. For example, the width of the hatched reqion at W=2 increases

from about 33% to slightly over 60%.

Finally, note that the particular case when both 9i and Biin t are

infinite, shown previously in Fiq. 2, is excluded in Fiq. 3.

-14-
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5. EXTENSION FOR ARBITRARY REACTION RATE EXPRESSIONS

The procedure leading to the shape normalization, developed here for

first-order reactions, can also be extended to include arbitrary reaction rate

expressions, which exhibit positive-order as C + 0. This latter condition is

satisfied by all physically reasonable rate expressions, and simply assures

that the width of the reaction zone, near the surface of the active catalyst

zone, in the diffusion-controlled regime decreases as the Thiele modulus

increases; i.e., r, + 0 as * .

Consider then a general reaction rate expression r(c), the definition

of the Thiele modulus modifies, as usual [31, to

rr (Cs[8)] 1/2 (3

while expression (12) for the effectiveness factor does not change, since from

eqn (11), r(C) + r(C ) as + -. Following the same steps described above

for a first-order reaction, it can again be concluded that n W 1/ as

+

In terms of the non-normalized Thiele modulus #01 this implies that the

asymptotic slope of the n-4 curve for the catalyst acitvity profile (20) is
0

aqain -2q. This result is indeed confirmed by the numerical computations

2
reported by Villadsen (41, for r(C) = kC/(1+KC) . As before, the absolute

maqnitude of the asymptote of n for large #0 cannot he obtained exactly

for this activity profile.

-16-
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NOTATION

a W) catalyst activity, k(x)/i

a volume average catalyst acitvity

Bi Blot number, kcR/De

ii normalized Blot number, k RID
c e

Sit normalized internal Blot number, f0  '~ dVI1'

c 1/(0+2) V2

C reactant concentration

D effective diffusion coefficien~t

q (0+1)/(0+2) ~

k(x) local rate constant

Ic volume averaqe rat0or.~~

k c external mass transfer coefficient

Is parameter characterizinq activity profile

n integer characteristic of pellet geometry; 0 for infinite slab,

1 for infinite cylinder, 2 for sphere

r dimensionless width of the reaction zone

R characteristic pellet dimension, half-thichness (n=O), radius
(n-1,2)

R normalized pellet dimension, V IS ad

S pellet surface area at location x

S2  pellet surface area at x -x

S pellet external surface area

VP pellet volume

x distance from center of pellet; reqions 0 4 x < x I and x 2 *x 4 R

are inert, while reqion xi < x < x 2  iR catalytically active.

y normalized distance from center, xi

fl/ft



Greek Symbols

B parameter characterizinq the activity profile

5 width of the reaction zone

r( ) Gamma function

? effectiveness factor

I D  effectiveness factor for the Dirichlet problem

Thiele modulus, R(ka/D e )

0 Thiele modulus based on volume averaqe rate constant, R(W/D e ) 1/2

* normalized Thiele modulus, defined by eqn (14)

characteristic time for diffusion

w parameter defined by eqn (32)

Te /a

Subscripts

a asymptotic value

e asymptotic value of exact analytic expression

a surface of catalytically active zone

6 reaction zone

-19-
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